GUT MICROBIOTA - THE CINDERELLA OF NEUROLOGICAL DISORDERS

Authors

  • Cristina-Georgiana CROITORU “Prof. Dr. N. Oblu” Emergency Clinical Hospital Iasi
  • T. CUCIUREANU “Grigore T. Popa” University of Medicine and Pharmacy Iasi, Romania

Abstract

GUT MICROBIOTA: THE CINDERELLA OF NEUROLOGICAL DISORDERS (Abstract): Gut microbiota (GM) modulates local and systemic immune mediated responses therefore its imbalance might be implicated in the pathogenesis of several human disorders. The pallet is wide including gastrointestinal diseases such as inflammatory bowel disease, irritable bowel syndrome, metabolic diseases such as metabolic syndrome, types 1 and 2 diabetes, allergic disorders and certain tumors. Regarding neurological disorders, dysbiosis is implicated in the pathogenesis of neurodegenerative conditions like Alzheimer’s disease, Parkinson disease and amyotrophic lateral sclerosis. New data associate GM alterations with ischemic stroke and epilepsy. Also, a possible link between dysbiosis and myasthenia gravis is discussed. The aim was to synthetize the interaction between GM and the autoimmune system and the possible implications of this interaction in the pathogenesis of several neurological diseases, both autoimmune and non-autoimmune. These cause-effect relations open opportunities regarding potential new treatment measures.

Author Biographies

  • Cristina-Georgiana CROITORU, “Prof. Dr. N. Oblu” Emergency Clinical Hospital Iasi

    Department of Neurology

  • T. CUCIUREANU, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, Romania

    Faculty of Medicine
    Department of Medical Specialties (I)

References

1. Sommer F, Bäckhed F. The gut microbiota: masters of host development and physiology. Nat Rev Microbiol 2013; 11: 227-238.
2. Britton RA, Young VB. Role of the intestinal microbiota in resistance to colonization by Clostridium difficile. Gastroenterology 2014; 146: 1547-1553.
3. Trifan A, Girleanu I, et al. Clostridium difficile infection in hospitalized octogenarian patients. GeriatrGerontol Int 2018; 18(2): 315-320.
4. Constantinescu S, Plesca CE, Postolache P, et al. Antibioresistance of Microbial Strains Implicated in the Etiology of Sepsis with Oro-Maxillofacial Portal of Entry. Rev. Chim. (Bucuresti) 2018; 69(1): 236-240.
5. Nemes RM, Pop CS, Calagiu D, et al. Anemia in inflammatory bowel disease more than an extraintestinal complication. Rev Med Chir Soc Med Nat Iasi 2016; 120(1):34-39.
6. Zhao L. The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol 2013; 11: 639-647
7. Smits LP, Bouter KE, de Vos WM, Borody TJ, Nieuwdorp M. Therapeutic potential of fecal microbiota transplantation. Gastroenterology 2013; 145: 946-953.
8. Russell SL, Finlay BB. The impact of gut microbes in allergic diseases. Curr Opin Gastroenterol 2012; 28: 563-569
9. Gold JS, Bayar S, Salem RR. Association of Streptococcus bovis bacteremia with colonic neoplasia and extracolonic malignancy. Arch Surg 2004; 139: 760-765
10. Hinganu D, Hinganu MV, Mihalceanu E, et al. Anatomical, Imagistic and Structural Study of Pharamagnetic Substances in Cervical Tumors. Rev. Chim. (Bucuresti) 2018: 69(3): 714-716.
11. Parashar A, Udayabanu M. Gut microbiota: Implications in Parkinson's disease. Parkinsonism & Related Disorders 2017; 38: 1-7.
12. Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. MicrobEcol Health Dis 2015; 26: 26191.
13. Borody TJ, Leis SM, Campbell J, Torres M, Nowak A. Fecal microbiota transplantation (FMT) in multiple sclerosis (MS) Am J Gastroenterol 2011; 106: S352.
14. Boangher S, Mespouille P, Sophie G, Van Pesch V, Cuciureanu D. Herpes simplex encephalitis relapse associated with positive N-methyl-D-aspartate receptor antibodies, Acta Neurologica Belgica 2018; 118: 1-3.
15. Burokas A, Moloney RD, Dinan TG, Cryan JF. Microbiota regulation of the mammalian gut-brain axis. Adv Appl Microbiol 2015; 91: 1-62.
16. Dinan TG, Cryan JF. The impact of gut microbiota on brain and behavior: implications for psychiatry. CurrOpin Clin NutrMetab Care 2015; 18(6): 552-558.
17. Lankelma JM, Nieuwdorp M, de Vos WM, Wiersinga WJ. The gut microbiota in internal medicine: implications for health and disease. Neth J Med 2015; 73: 61–68.
18. Rusu C, Preda C, Sireteanu A, Vulpoi C. Risk factors in autism spectrum disorders: the role of genetic, epigenetic, immune and environmental interactions. Environ Eng Manag J 2015; 14(4): 913-921
19. Morgan XC, Segata N, Huttenhower C. Biodiversity and functional genomics in the human microbiome. Trends Genet 2013; 29: 51–58.
20. Villanueva-Millán MJ, Pérez-Matute P, Oteo JA. Gut microbiota: a key player in health and disease. A review focused on obesity. J PhysiolBiochem 2015; 71(3): 509-525.
21. Hinganu MV, Salahoru P, Hinganu D. Anal and perianal disorders management. Rev Med Chir Soc Med Nat Iasi 2018: 122(3): 522-527.
22. Guarner F, Malagelada JR. Gut flora in health and disease. Lancet 2003; 361: 512-519
23. Danca C, Costea CF, Costan VV, et al. Gut Microbiota and Serotonin - Biochemical Pathways in Age-Related Macular Disease. Rev. Chim. (Bucuresti) 2018; 69(10): 2823-2825.
24. Shen J, Obin MS, Zhao L. The gut microbiota, obesity and insulin resistance. Mol Aspects Med 2003; 34: 39-58
25. Van den Hoogen WJ, Laman JD, 't Hart BA. Modulation of Multiple Sclerosis and Its Animal Model Experimental Autoimmune Encephalomyelitis by Food and Gut Microbiota. Front Immunol 2017; 8: 1081.
26. Wang B, Mao YK, et al. Luminal administration ex vivo of a live Lactobacillus species moderates mouse jejunal motility within minutes. Faseb 2012; J 24: 4078-4088.
27. Matsumoto M, Kibe R, Ooga T, Aiba Y, Sawaki E, Koga Y, Benno Y. Cerebral low-molecular metabolites influenced by intestinal microbiota: a pilot study. Front Syst Neurosci 2013; 7: 9.
28. Ramanujam R. Pirskanen R. Ramanujam S. Hammarström L. Utiliying twins concordance rates to infer the predisposition to myasthenia gravis. Twin Res Hum Genet 2011; 14: 129-136.
29. Branton WG, Lu JQ, et al. Brain microbiota disruption within inflammatory demyelinating lesions in multiple sclerosis. Sci Rep 2016; 6: 373-344.
30. Braak H, Tredici K, et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiology of Aging 2003; 24 (2): 197-211.
31. Rook GA. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: Darwinian medicine and the 'hygiene' or 'old friends' hypothesis. Clin Exp Immunol 2010; 160: 70-79.
32. Lucas K, Maes M. Role of the Toll Like receptor (TLR) radical cycle in chronic inflammation: possible treatments targeting the TLR4 pathway. Mol Neurobiol 2013; 48: 190-204.
33. Lindner C., Wahl B., Föhse L., Suerbaum S., Macpherson A. J., Prinz I, Pabst O. Age, microbiota, and T cells shape diverse individual IgA repertoires in the intestine. The Journal of Experimental Medicine, 2012; 209(2), 365-377.
34. Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, Mazmanian SK. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 2011; 332: 974-977.
35. Atarashi K, TanoueT, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011; 331: 337-341.
36. Scheperjans F, Aho V, et al. Gut microbiota is related to Parkinson’s disease and clinical phenotype. Mov. Disord. 2015; 30: 350-358.
37. Dobbs SM, Dobbs RJ, et al. Peripheral etiopathogenic drivers and mediators of Parkinson’s disease and co-morbidities: role of gastrointestinal microbiota. Journal of Neuro Virology 2016; 22: 22-32.
38. Benakis C, Brea D et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal gamma delta T cells. Nat Med 2016; 22(5): 516-23.
39. Erny D, Hrabe de Angelis AL et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015; 18: 965-977.
40. Singh V, Roth S, et al. Microbiota Dysbiosis Controls the Neuroinflammatory Response after Stroke, J Neurosci 2016; 36(28): 7428-7440.
41. Olsen AB, Hetz RA, et al. Effects of traumatic brain injury on intestinal contractility. Neurogastroenterol Motil 2013; 25: 593-e463.
42. Constantinescu V, Matei D, Costache V, Cuciureanu D, Arsenescu-Georgescu C. Linear and nonlinear parameters of heart rate variability in ischemic stroke patients, Neurologia I Neurochirurgia Polska 2018; 52: 194-206.
43. Constantinescu V, Matei D, Cuciureanu D, Corciova C, Ignat B, Popescu CD. Cortical modulation of cardiac autonomic activity in ischemic stroke patients, Acta Neurologica Belgica 2016; 116: 473-480.
44. Palace J, Lang B, Epilepsy: an autoimmune disease? Journal of Neurology, Neurosurgery&Psychiatry 2000; 69: 711-714.
45. Cuciureanu DI, Constantinescu IM, Danciu F, Cuciureanu T. Brain tuberculomas revealed by epileptic generalized seizures after tuberculostatic treatment: a case report. Epilepsia 2015; 56(suppl. 1): 128.
46. Wu J, Zhang Y, Yang H, Rao Y, Miao J, Lu X. Intestinal Microbiota as an Alternative Therapeutic Target for Epilepsy. Canadian Journal of Infectious Diseases and Medical Microbiology 2016; 2016: 1-5.
47. Mindruta IR, Bajenaru OA, et al. Experience with lacosamide in treating focal epilepsy patients in Romania: efficacy, safety and time to reach response [abstract no. p332]. Epilepsia 2014; 55(Suppl 2): 110.
48. Cuciureanu DI, Nita A, Cuciureanu A, Cuciureanu T, Constantinescu IM. Experience with first episode of consciousness loss assessment in a regional center of Romania. Epilepsia 2016; 57 (suppl. 2): 194.
49. Cuciureanu DI, Cuciureanu T, Cuciureanu A. Neurotic disorder and unexpected EEG records in apparent healthy people J. Neurol. Sci 2017; 381 (suppl S): 339.
50. Grigoriadis N, van Pesch V. A basic overview of multiple sclerosis immunopathology. Eur J Neurol 2015; 22: S2.
51. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M. The gut microbiota influences blood-brain barrier permeability in mice. Sci TranslMed 2014; 19: 6.
52. Erny D, Hrabě de Angelis AL, Prinz M. Communicating systems in the body: how microbiota and microglia cooperate. Immunology 2016; 150: 7–15.
53. LeBien TW, Tedder TF. B lymphocytes: how they develop and function. Blood. 2008; 112(5): 1570-1580.
54. Luchanok U, Kaminski HJ. Ocular myasthenia: diagnostic and treatment recommendations and the evidence base. CurrOpin Neurol 2008; 21: 8-15.
55. Marx A. Pfister F. Schalke B. Saruhan-Direskeneli G. Melms A. Ströbel P. The different roles of the thymus in the pathogenesis of the various myasthenia gravis subtypes. Autoimmun Rev 2013; 12(9): 875-884.
56. Kanai T. Uzawa A, et al. HLA-DRB1*14 and DQB1*05 are associated with Japanese anti-MuSK antibody-positive myasthenia gravis patients. Journal of the Neurological Sciences 2016; 363: 116-118.
57. Choi HH, Cho YS. Fecal Microbiota Transplantation: Current Applications, Effectiveness, and Future Perspectives. ClinEndosc 2016; 49(3): 257-65.
58. Li Q, Zhou JM. The microbiota-gut-brain axis and its potential therapeutic role in autism spectrum disorder. Neuroscience 2016; 2:131-139.
59. Xu MQ, Cao HL et al. Fecal microbiota transplantation broadening its application beyond intestinal disorders. World J Gastroenterol 2015; 21: 102-111.
60. Khoruts A, Weingarden AR. Emergence of fecal microbiota transplantation as an approach to repair disrupted microbial gut ecology. Immunol. Lett. 2014; 162: 77-81.

Additional Files

Published

2019-03-29

Issue

Section

INTERNAL MEDICINE - PEDIATRICS