BLOOD PRESSURE LOWERING EFFECTS OF CENTRAL TNF- BLOCKADE DEPENDS ON FUNCTIONAL LEPTIN SIGNALING

Authors

  • I. TUDORANCEA “Grigore T. Popa” University of Medicine and Pharmacy Iasi
  • Ionela Lacramioara SERBAN “Grigore T. Popa” University of Medicine and Pharmacy Iasi
  • D. N. ȘERBAN “Grigore T. Popa” University of Medicine and Pharmacy Iasi
  • C. C. CATALIN “Grigore T. Popa” University of Medicine and Pharmacy Iasi
  • B. I. TAMBA “Grigore T. Popa” University of Medicine and Pharmacy Iasi
  • R. ILIESCU “Grigore T. Popa” University of Medicine and Pharmacy Iasi

Keywords:

OBESITY, LEPTIN, TNF-α, HYPERTENSION, BAROREFLEX SENSITIVITY

Abstract

Background: Obesity is a major independent risk factor for the development and progression of arterial hypertension. Leptin-mediated sympathoexcitation is a common phenomenon in obesity. Since leptin leads to the synthesis of Tumor Necrosis Factor (TNF)-a in the central nervous system, we hypothesized that the pathological activation of the sympathetic nervous system in obesity-associated hypertension may be mediated by central leptin-related TNF-a mechanisms. Material and methods: We compared the long-term effects of TNF-a inhibition on mean arterial blood pressure, heart rate, baroreflex sensitivity and sympathetic tone in animals with a functional leptin signaling (i.e. lean Zucker rats - LZR) and in animals insensitive to leptin (i.e. obese Zucker rats - OZR). Results: central inhibition of TNF-a in normotensive LZR significantly lowered mean arterial blood pressure, decreased sympathetic activity and improved baroreflex sensitivity but not in the OZR group. Conclusions: These findings suggest that a functionally central leptin-TNF-a signaling plays a key role in mediating the central sympathetic outflow and may represent a promising approach to ameliorate the pathophysiology of obesity related-hypertension.

Author Biographies

  • I. TUDORANCEA, “Grigore T. Popa” University of Medicine and Pharmacy Iasi

    Department of Morpho-functional Sciences (II). Division of Physiology
    “Sf. Spiridon” County Clinical Emergency Hospital Iasi, Romania
    Cardiology Clinic

  • Ionela Lacramioara SERBAN, “Grigore T. Popa” University of Medicine and Pharmacy Iasi

    Department of Morpho-functional Sciences (II). Division of Physiology

  • D. N. ȘERBAN, “Grigore T. Popa” University of Medicine and Pharmacy Iasi

    Department of Morpho-functional Sciences (II). Division of Physiology

  • C. C. CATALIN, “Grigore T. Popa” University of Medicine and Pharmacy Iasi

    Advanced Research and Development Center for Experimental Medicine (CEMEX)

  • B. I. TAMBA, “Grigore T. Popa” University of Medicine and Pharmacy Iasi

    Department of Morpho-functional Sciences (II). Division of Pharmacology
    Advanced Research and Development Center for Experimental Medicine (CEMEX)

  • R. ILIESCU, “Grigore T. Popa” University of Medicine and Pharmacy Iasi

    Department of Morpho-functional Sciences (II). Division of Pharmacology

References

1. Jordan J, Kurschat C, Reuter H. Arterial Hypertension. Dtsch Arztebl Int 2018; 115(33-34): 557-568.
2. Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res 2015; 116(6): 991-1006.
3. Guarino D, Nannipieri M, Iervasi G, Taddei S, Bruno RM. The role of the autonomic nervous system in the pathophysiology of obesity. Front Physiol 2017; 8: 665 / doi: 10.3389/fphys.2017.00665. eCol-lection 2017.
4. Lambert EA, Esler MD, Schlaich MP, Dixon J, Eikelis N, Lambert GW. Obesity-Associated Organ Damage and Sympathetic Nervous Activity. Hypertension 2019; 73(6): 1150-1159.
5. Valensi P. Autonomic nervous system activity changes in patients with hypertension and overweight: role and therapeutic implications. Cardiovasc Diabetol 2021; 20(1): 170 / doi: 10.1186/s12933-021-01356-w.
6. da Silva AA, do Carmo JM, Hall JE. Role of leptin and central nervous system melanocortins in obesity hypertension. Curr Opin Nephrol Hypertens 2013; 22(2): 135-140.
7. Mark AL, Agassandian K, Morgan DA, Liu X, Cassell MD, Rahmouni K. Leptin signaling in the nucleus tractus solitarii increases sympathetic nerve activity to the kidney. Hypertension 2009; 53(2): 375-380.
8. Harlan SM, Rahmouni K. PI3K signaling: A key pathway in the control of sympathetic traffic and arterial pressure by leptin. Mol Metab 2013; 2(2): 69-73.
9. Han C, Wu W, Ale A, Kim MS, Cai D. Central Leptin and Tumor Necrosis Factor-α (TNFα) in Diurnal Control of Blood Pressure and Hypertension. J Biol Chem 2016; 291(29): 15131-15142.
10. Smith MM, Minson CT. Obesity and adipokines: effects on sympathetic overactivity. J Physiol (Lond) 2012; 590(8): 1787-1801.
11. Ding L, Kang Y, Dai H-B, et al. Adipose afferent reflex is enhanced by TNFα in paraventricular nucleus through NADPH oxidase-dependent ROS generation in obesity-related hypertensive rats. J Transl Med 2019; 17(1): 256 / doi: 10.1186/s12967-019-2006-0.
12. Arnold AC, Shaltout HA, Gallagher PE, Diz DI. Leptin impairs cardiovagal baroreflex function at the level of the solitary tract nucleus. Hypertension 2009; 54(5): 1001-1008.
13. Żera T, Nowiński A, Kwiatkowski P. Centrally administered TNF increases arterial blood pressure independently of nitric oxide synthase. Neuropeptides 2016; 58: 67-72.
14. Tudorancea I, Lohmeier TE, Alexander BT, Pieptu D, Serban DN, Iliescu R. Reduced Renal Mass, Salt-Sensitive Hypertension Is Resistant to Renal Denervation. Front Physiol 2018; 9: 455 / doi:10.3389/fphys.2018.00455.
15. Abdelrahman AM, Al Suleimani YM, Ashique M, Manoj P, Ali BH. Effect of infliximab and tocili-zumab on fructose-induced hyperinsulinemia and hypertension in rats. Biomed Pharmacother 2018; 105: 182-186.
16. Sriramula S, Cardinale JP, Francis J. Inhibition of TNF in the brain reverses alterations in RAS com-ponents and attenuates angiotensin II-induced hypertension. PLoS One 2013; 8(5): e63847.
17. Iliescu R, Tudorancea I, Irwin ED, Lohmeier TE. Chronic baroreflex activation restores spontaneous baroreflex control and variability of heart rate in obesity-induced hypertension. Am J Physiol Heart Circ Physiol 2013; 305(7): H1080-H1088.
18. Oliveira-Sales EB, Toward MA, Campos RR, Paton JFR. Revealing the role of the autonomic nervous system in the development and maintenance of Goldblatt hypertension in rats. Auton Neurosci 2014; 183: 23-29.
19. Lafontan M. Fat cells: afferent and efferent messages define new approaches to treat obesity. Annu Rev Pharmacol Toxicol 2005; 45: 119-146.
20. Karczewski J, Śledzińska E, Baturo A, Jończyk I, Maleszko A, Samborski P, et al. Obesity and in-flammation. Eur Cytokine Netw 2018; 29(3): 83-94.
21. Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y. Obesity and inflammation: the linking mecha-nism and the complications. Arch Med Sci 2017; 13(4): 851-863.
22. Yamagishi SI, Edelstein D, Du XL, Kaneda Y, Guzmán M, Brownlee M. Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A. J Biol Chem 2001; 276(27): 25096-25100.
23. Mancuso P, Canetti C, Gottschalk A, Tithof PK, Peters-Golden M. Leptin augments alveolar macro-phage leukotriene synthesis by increasing phospholipase activity and enhancing group IVC iPLA2 (cPLA2gamma) protein expression. Am J Physiol Lung Cell Mol Physiol 2004; 287(3): L497-502.
24. Mattioli B, Straface E, Quaranta MG, Giordani L, Viora M. Leptin promotes differentiation and survival of human dendritic cells and licenses them for Th1 priming. J Immunol 2005; 174(11): 6820-6828.
25. Paz-Filho G, Mastronardi C, Franco CB, Wang KB, Wong M-L, Licinio J. Leptin: molecular mecha-nisms, systemic pro-inflammatory effects, and clinical implications. Arq Bras Endocrinol Metabol 2012; 56(9): 597-607.
26. Lee S-M, Choi H-J, Oh C-H, Oh J-W, Han J-S. Leptin increases TNF-α expression and production through phospholipase D1 in Raw 264.7 cells. PLoS One 2014; 9(7): e102373.
27. Shen J, Sakaida I, Uchida K, Terai S, Okita K. Leptin enhances TNF-alpha production via p38 and JNK MAPK in LPS-stimulated Kupffer cells. Life Sci 2005; 77(13): 1502-1515.
28. Agrawal S, Gollapudi S, Su H, Gupta S. Leptin activates human B cells to secrete TNF-α, IL-6, and IL-10 via JAK2/STAT3 and p38MAPK/ERK1/2 signaling pathway. J Clin Immunol 2011; 31(3): 472-478.
29. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993; 259(5091): 87-91.
30. Martinelli I, Tomassoni D, Moruzzi M, et al. Cardiovascular changes related to metabolic syndrome: evidence in obese zucker rats. Int J Mol Sci 2020; 21(6): 2035 / doi: 10.3390/ijms21062035.
31. Rivera L, Morón R, Sánchez M, Zarzuelo A, Galisteo M. Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity (Silver Spring) 2008; 16(9): 2081-2087.
32. Iliescu R, Chade AR. Progressive renal vascular proliferation and injury in obese Zucker rats. Micro-circulation. 2010; 17(4): 250-258.
33. Satoh N, Ogawa Y, Katsuura G, et al. Sympathetic activation of leptin via the ventromedial hypothal-amus: leptin-induced increase in catecholamine secretion. Diabetes 1999; 48(9):1787-1793.
34. Rahmouni K, Morgan DA. Hypothalamic arcuate nucleus mediates the sympathetic and arterial pressure responses to leptin. Hypertension 2007; 49(3): 647-652.
35. Haynes WG. Interaction between leptin and sympathetic nervous system in hypertension. Curr Hy-pertens Rep 2000; 2(3): 311-318.
36. Shi Z, Li B, Brooks VL. Role of the paraventricular nucleus of the hypothalamus in the sympathoex-citatory effects of leptin. Hypertension 2015; 66(5): 1034-1041.
37. Yu B, Cai D. Neural Programmatic Role of Leptin, TNFα, Melanocortin, and Glutamate in Blood Pressure Regulation vs. Obesity-Related Hypertension in Male C57BL/6 Mice. Endocrinology 2017; 158(6): 1766-1775.
38. Carvalho-Galvão A, Guimarães DD, De Brito Alves JL, Braga VA. Central inhibition of tumor necro-sis factor alpha reduces hypertension by attenuating oxidative stress in the rostral ventrolateral medulla in renovascular hypertensive rats. Front Physiol 2019; 10: 491 / doi: 10.3389/fphys.2019.00491.

Additional Files

Published

2023-09-30