PROMISING BIOLOGICAL ACTIVITIES OF SESQUITERPENE LACTONES

Authors

  • Ana Flavia BURLEC Grigore T. Popa” University of Medicine and Pharmacy Iasi
  • Oana CIOANCA “Grigore T. Popa” University of Medicine and Pharmacy Iasi
  • Luana Catalina ENACHE “Grigore T. Popa” University of Medicine and Pharmacy Iasi
  • Monica HANCIANU “Grigore T. Popa” University of Medicine and Pharmacy Iasi

Keywords:

SESQUITERPENE LACTONES, BIOLOGICAL ACTIONS, ANTITUMOR, ANTI-INFLAMMATORY

Abstract

Sesquiterpene lactones (SQLs) are an important group of bioactive compounds that are usually found in the Asteraceae family, where they seem to be some of the most important constituents for defense against microorganisms. These secondary metabolites have a skeleton of 15 carbon atoms and are derived from farnesyl diphosphate. It is generally believed that they might present certain biological actions in humans. Some of these actions are worth extended research: anti-inflammatory, antitumor, antibacterial, antifungal, antinociceptive, antiulcer and hepatoprotective. It seems that the presence of the α-methylene-γ-lactone group is correlated with the existence of many pharmacological actions. Due to promising results on human cancer cell lines, the research was expanded to clinical trials investigating the antitumor potential. Sesquiterpene lactones inhibit the expression of the nuclear factor kappa-light-chain-enhancer of activated B cells, which could explain the anti-inflammatory effect. They also have good activity against Gram positive bacteria. As a result, some of these compounds show promise for practical use in the treatment of cancer, different inflammatory diseases and even as antibacterial or antifungal agents, while some have already been introduced in therapy as antimalarial agents (artemisinin and its semisynthetic derivatives). However, more studies regarding their biological activities and toxicity mechanisms are still to be done.

Author Biographies

  • Ana Flavia BURLEC, Grigore T. Popa” University of Medicine and Pharmacy Iasi

    Faculty of Pharmacy
    Department of Pharmacognosy

  • Oana CIOANCA, “Grigore T. Popa” University of Medicine and Pharmacy Iasi

    Faculty of Pharmacy
    Department of Pharmacognosy

  • Luana Catalina ENACHE, “Grigore T. Popa” University of Medicine and Pharmacy Iasi

    Faculty of Pharmacy
    Department of Pharmacognosy

  • Monica HANCIANU, “Grigore T. Popa” University of Medicine and Pharmacy Iasi

    Faculty of Pharmacy
    Department of Pharmacognosy

References

1. Abad MJ, Bedoya LM, Apaza L, Bermejo P. The Artemisia L. Genus: A Review of Bioactive Ses-quiterpene Lactones. In: Atta-Ur-Rahman editor. Studies in Natural Products Chemistry. London: Elsevier, 2012; (37): 43-65.
2. Gach K, Długosz A, Janecka A. The role of oxidative stress in anticancer activity of sesquiterpene lactones. Naunyn Schmiedebergs Arch Pharmacol 2015; 388(5): 477-486.
3. Modzelewska A, Sur S, Kumar S, Khan S. Sesquiterpenes: Natural products that decrease cancer growth. Curr Med Chem Anticancer Agents 2005; 5: 477-499.
4. Evans W, Evans D, Trease G. Trease and Evans Pharmacognosy. 16th ed. Edinburgh: Saun-ders/Elsevier, 2009.
5. Schmidt TJ. Structure-activity relationships of Sesquiterpene Lactones. In: Atta-Ur-Rahman editor. Studies in Natural Products Chemistry. London: Elsevier, 2006; (33): 309-392.
6. Chadwick M, Trewin H, Gawthrop F, Wagstaff C. Sesquiterpenoids Lactones: Benefits to Plants and People. Int J Mol Sci 2013; 14(6): 12780-12805.
7. Ghantous A, Gali-Muhtasib H, Vuorela H, Saliba NA, Darwiche N. What made sesquiterpene lactones reach cancer clinical trials? Drug Discov Today 2010; 15(15/16): 668-678.
8. Ivănescu B, Miron A, Corciova A. Sesquiterpene Lactones from Artemisia Genus: Biological activities and methods of analysis. J Anal Methods Chem 2015; 2015: 1-21.
9. Arsene CCM, Cioancă O, Draghia L, Hăncianu M. Morphological Characteristics, Phenolic and Terpenoid Profiles in Garden Chrysanthemum Grown in Different Nutritional Conditions. Not Bot Horti Agrobo 2015; 43(2): 371-379.
10. Merfort I. Review of the analytical techniques for sesquiterpenes and sesquiterpene lactones. J Chro-matogr A 2002; 967(1): 115-130.
11. Huang C, Lin K, Cheng Y, Hsu C, Yang S, Shyur L. Hepatoprotective effect and mechanistic insights of deoxyelephantopin, a phyto-sesquiterpene lactone, against fulminant hepatitis. J Nutr Biochem 2013; 24(3): 516-530.
12. Natividad GM, Broadley KJ, Kariuki B, Kidd EJ, Ford WR, Simons C. Actions of Artemisia vulgaris extracts and isolated sesquiterpene lactones against receptors mediating contraction of guinea pig ileum and trachea. ‎J Ethnopharmacol 2011; 137: 808-816.
13. Amorim MH, Gil da Costa RM, Lopes C, Bastos MM. Sesquiterpene lactones: adverse health effects and toxicity mechanisms. Crit Rev Toxicol 2013; 43(7): 559-579.
14. Paulsen E. Systemic allergic dermatitis caused by sesquiterpene lactones. Contact Dermatitis 2016; 76(1): 1-10.
15. Kupchan SM, Eakin MA, Thomas AM. Tumor inhibitors. 69. Structure-cytotoxicity relationships among the sesquiterpene lactones. J Med Chem 1971; 14(12): 1147-1152.
16. ***https://clinicaltrials.gov
17. Wang W, Adachi M, Kawamura R et al. Parthenolide-induced apoptosis in multiple myeloma cells involves reactive oxygen species generation and cell sensitivity depends on catalase activity. Apoptosis 2006; 11(12): 2225-2235.
18. Liu Y, Kim S, Park Y, Lee S, Kim S. Parthenolide promotes apoptotic cell death and inhibits the migration and invasion of SW620 cells. Intest Res 2017; 15(2): 174-181.
19. Lin M, Bi H, Yan Y, Huang W, Zhang G, Zhang G et al. Parthenolide suppresses non-small cell lung cancer GLC-82 cells growth via B-Raf/MAPK/Erk pathway. Oncotarget 2017; 8(14): 23436-23447.
20. Liu W, Wang X, Sun J, Yang Y, Li W, Song J. Parthenolide suppresses pancreatic cell growth by autophagy-mediated apoptosis. Onco Targets Ther 2017; 10: 453-461.
21. Jeyamohan S, Moorthy R, Kannan M, Arockiam A. Parthenolide induces apoptosis and autophagy through the suppression of PI3K/Akt signaling pathway in cervical cancer. Biotechnol Lett 2016; 38(8): 1251-1260.
22. Yang C, Yang Q, Kong Q, Yuan W, Ou Yang Y. Parthenolide Induces Reactive Oxygen Species-Mediated Autophagic Cell Death in Human Osteosarcoma Cells. Cell Physiol Biochem 2016; 40(1-2): 146-154.
23. Cheng G, Xie L. Parthenolide Induces Apoptosis and Cell Cycle Arrest of Human 5637 Bladder Cancer Cells In Vitro. Molecules 2011; 16(12): 6758-6768.
24. D'Anneo A, Carlisi D, Lauricella M, Puleio R, Martinez R, Di Bella S et al. Parthenolide generates reactive oxygen species and autophagy in MDA-MB231 cells. A soluble parthenolide analogue inhibits tumour growth and metastasis in a xenograft model of breast cancer. Cell Death Dis 2013; 4(10): e891.
25. Sun Y, St. Clair D, Xu Y, Crooks P, St. Clair W. A NADPH Oxidase-Dependent Redox Signaling Pathway Mediates the Selective Radiosensitization Effect of Parthenolide in Prostate Cancer Cells. Cancer Res 2010; 70(7): 2880-2890.
26. Lesiak K, Koprowska K, Zalesna I, Nejc D, Düchler M, Czyz M. Parthenolide, a sesquiterpene lactone from the medical herb feverfew, shows anticancer activity against human melanoma cells in vitro. Melanoma Res 2010; 20(1): 21-34.
27. Zahedpanah M, Shaiegan M, Ghaffari SH, Nikbakht M, Nikugoftar M, Mohammadi S. Parthenolide Induces Apoptosis in Committed Progenitor AML Cell line U937 via Reduction in Osteopontin. Rep Biochem Mol Biol 2016; 4(2): 82-88.
28. Zhang C, Lu T, Wang G, Ma C, Zhou Y. Costunolide, an active sesquiterpene lactone, induced apop-tosis via ROS-mediated ER stress and JNK pathway in human U2OS cells. Biomed Pharmacother 2016; 80: 253-259.
29. Hua P, Sun M, Zhang G, Zhang Y, Song G, Liu Z et al. Costunolide Induces Apoptosis through Generation of ROS and Activation of P53 in Human Esophageal Cancer Eca-109 Cells. J Biochem Mol Toxicol 2016; 30(9): 462-469.
30. Dong G, Shim A, Hyeon J, Lee H, Ryu J. Inhibition of Wnt/β-Catenin Pathway by Dehydrocostus Lactone and Costunolide in Colon Cancer Cells. Phytother Res 2015; 29(5): 680-686.
31. Hua P, Zhang G, Zhang Y, Sun M, Cui R, Li X et al. Costunolide induces G1/S phase arrest and activates mitochondrial‑mediated apoptotic pathways in SK‑MES 1 human lung squamous carcinoma cells. Oncol Lett 2016; 1: 2780-2786.
32. Bocca C, Gabriel L, Bozzo F, Miglietta A. A sesquiterpene lactone, costunolide, interacts with micro-tubule protein and inhibits the growth of MCF-7 cells. Chem Biol Interact 2004; 147(1): 79-86.
33. Roy A, Manikkam R. Cytotoxic Impact of Costunolide Isolated from Costus speciosus on Breast Cancer via Differential Regulation of Cell Cycle-An In-vitro and In-silico Approach. Phytother Res 2015; 29(10): 1532-1539.
34. Hsu J, Pan S, Ho Y, Hwang T, Kung F, Guh J. Costunolide Induces Apoptosis Through Nuclear Calcium2+ Overload and DNA Damage Response in Human Prostate Cancer. J Urol 2011; 185(5): 1967-1974.
35. Yang Y, Kim J, Lee K, Choi J. Costunolide induces apoptosis in platinum-resistant human ovarian cancer cells by generating reactive oxygen species. Gynecol Oncol 2011; 123(3): 588-596.
36. Choi J, Ha J, Park J, Lee J, Lee Y, Park H et al. Costunolide Triggers Apoptosis in Human Leukemia U937 Cells by Depleting Intracellular Thiols. Jpn J Cancer Res 2002; 93(12): 1327-1333.
37. Zhao P, Pan Z, Luo Y, Zhang L, Li X, Zhang G et al. Alantolactone Induces Apoptosis and Cell Cycle Arrest on Lung Squamous Cancer SK-MES-1 Cells. J Biochem Mol Toxicol 2015; 29(5):199-206.
38. Chun J, Li R, Cheng M, Kim Y. Alantolactone selectively suppresses STAT3 activation and exhibits potent anticancer activity in MDA-MB-231 cells. Cancer Lett 2015; 357(1): 393-403.
39. Ding Y, Wang H, Niu J, Luo M, Gou Y, Miao L et al. Induction of ROS Overload by Alantolactone Prompts Oxidative DNA Damage and Apoptosis in Colorectal Cancer Cells. Int J Mol Sci 2016; 17(4): 558.
40. Lei J, Yu J, Yin Y, Liu Y, Zou G. Alantolactone induces activation of apoptosis in human hepatoma cells. Food Chem Toxicol 2012; 50(9): 3313-3319.
41. Pal H, Sehar I, Bhushan S, Gupta B, Saxena A. Activation of caspases and poly (ADP-ribose) poly-merase cleavage to induce apoptosis in leukemia HL-60 cells by Inula racemosa. Toxicol in Vitro 2010; 24(6): 1599-1609.
42. Khan M, Yi F, Rasul A, Li T, Wang N, Gao H et al. Alantolactone induces apoptosis in glioblastoma cells via GSH depletion, ROS generation, and mitochondrial dysfunction. IUBMB Life. 2012; 64(9): 783-794.
43. Hohmann M, Longhi-Balbinot D, Guazelli C, Navarro S, Zarpelon A, Casagrande R et al. Sesquiter-pene Lactones: Structural Diversity and Perspectives as AntiInflammatory Molecules. In: Atta-Ur-Rahman editor. Studies in Natural Products Chemistry. London: Elsevier, 2016, 243-264.
44. Baud V, Karin M. Is NF-κB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 2009; 8(1): 33-40.
45. Michael B, Gedara S, Amer M, Stevenson L, Ahmed A. A new highly oxygenated pseudoguaianolide with 5-LOX inhibitory activity from Rudbeckia hirta L. flowers. Nat Prod Res 2013; 27(24): 2281-2285.
46. Bader A, Giner R, Martini F, Schinella G, Ríos J, Braca A et al. Modulation of COX, LOX and NFκB activities by Xanthium spinosum L. root extract and ziniolide. Fitoterapia 2013; 91: 284-289.
47. Padilla-Gonzalez G, dos Santos F, Da Costa F. Sesquiterpene Lactones: More Than Protective Plant Compounds with High Toxicity. CRC Crit Rev Plant Sci 2016; 35(1): 18-37.
48. Stojanović-Radić Z, Čomić L, Radulović N, Blagojević P, Denić M, Miltojević A et al. Antistaphylo-coccal activity of Inula helenium L. root essential oil: eudesmane sesquiterpene lactones induce cell membrane damage. Eur J Clin Microbiol Infect Dis 2011; 31(6): 1015-1025.
49. Cantrell C, Abate L, Fronczek F, Franzblau S, Quijano L, Fischer N. Antimycobacterial Eudesmano-lides from Inula helenium and Rudbeckia subtomentosa. Planta Med 1999; 65(4): 351-355.
50. Fischer N, Lu T, Cantrell C, Castañeda-Acosta J, Quijano L, Franzblau S. Antimycobacterial evaluation of germacranolides in honour of professor G.H. Neil Towers 75th birthday. Phytochemistry 1998; 49(2): 559-564.
51. Mehriardestani M, Aliahmadi A, Toliat T, Rahimi R. Medicinal plants and their isolated compounds showing anti- Trichomonas vaginalis - activity. Biomed Pharmacother 2017; 88: 885-893.
52. Velázquez-Domínguez J, A. Marchat L, López-Camarillo C, Mendoza-Hernández G, Sánchez-Espíndola E, Calzada F et al. Effect of the sesquiterpene lactone incomptine A in the energy metabolism of Entamoeba histolytica. Exp Parasitol 2013; 135(3): 503-510.
53. Skaltsa H, Lazari D, Panagouleas C, Georgiadou E, Garcia B, Sokovic M. Sesquiterpene lactones from Centaurea thessala and Centaurea attica. Antifungal activity. Phytochemistry 2000; 55(8): 903-908.
54. Wedge D, Galindo J, Macı́as F. Fungicidal activity of natural and synthetic sesquiterpene lactone analogs. Phytochemistry 2000; 53(7): 747-757.
55. Picman A. Antifungal activity of sesquiterpene lactones. Biochem Syst Ecol 1984; 12(1): 13-18.
56. Meng J, Hu Y, Chen J, Tan R. Antifungal highly oxygenated guaianolides and other constituents from Ajania fruticulosa. Phytochemistry 2001; 58(7): 1141-1145.

Additional Files

Published

2017-09-30